LIMITS TO INFINITY AND INTRO TO DERIVATIVES

Math 130 - Essentials of Calculus

17 February 2021

• • • • • • •

1/14

17 February 2021

Math 130 - Essentials of Calculus Limits to Infinity and Intro to Derivative:

EXAMPLE

Compute the limits

$$\lim_{x \to \infty} \frac{x^3 + 5x}{2x^3 - x^2 + 4}$$

Math 130 - Essentials of Calculus Limits to Infinity and Intro to Derivative

17 February 2021 2 / 14

э.

イロト 人間 トイヨト イヨト

EXAMPLE

Compute the limits

Math 130 - Essentials of Calculus Limits to Infinity and Intro to Derivative

ъ

イロト イポト イヨト イヨト

EXAMPLE

Compute the limits $\lim_{x \to \infty} \frac{x^3 + 5x}{2x^3 - x^2 + 4}$ $\lim_{x \to \infty} \frac{2x^2 - 1}{4x^2 + x}$ $\lim_{x \to -\infty} \frac{t^2 + 2}{t^3 + t^2 - 1}$

Math 130 - Essentials of Calculus Limits to Infinity and Intro to Derivative

ъ

イロト イポト イヨト イヨト

EXAMPLE

Compute the limits $\lim_{x \to \infty} \frac{x^3 + 5x}{2x^3 - x^2 + 4}$ $\lim_{x\to\infty}\frac{2x^2-1}{4x^2+x}$ 3 $\lim_{x \to -\infty} \frac{t^2 + 2}{t^3 + t^2 - 1}$ $\lim_{x \to \infty} \frac{x + x^3 + x^5}{1 - x^2 + x^4}$

Math 130 - Essentials of Calculus Limits to Infinity and Intro to Derivative

ъ

イロト イポト イヨト イヨト

Asymptote Example

EXAMPLE

Find all vertical and horizontal asymptotes of the curve

$$y = \frac{2x^2 + x - 1}{x^2 + x - 2}$$

Math 130 - Essentials of Calculus Limits to Infinity and Intro to Derivative

17 February 2021 3 / 14

• • • • • • •

Before, we were trying to estimate the speed of a baseball 1 second after being thrown straight upward, where the height of the ball after *t* seconds was given by: $h(t) = 36t - 16t^2$.

• • • • • • • •

Before, we were trying to estimate the speed of a baseball 1 second after being thrown straight upward, where the height of the ball after *t* seconds was given by: $h(t) = 36t - 16t^2$. The method we used was to shrink the interval of time that we took the average over.

Before, we were trying to estimate the speed of a baseball 1 second after being thrown straight upward, where the height of the ball after *t* seconds was given by: $h(t) = 36t - 16t^2$. The method we used was to shrink the interval of time that we took the average over. That is, we used the process

$$\lim_{\Delta t \to 0} \frac{\Delta h}{\Delta t} = \lim_{t \to 1} \frac{h(t) - h(1)}{t - 1}$$

Math 130 - Essentials of Calculus Limits to Infinity and Intro to Derivative:

Generally speaking, the instantaneous rate of change is the limit of the average rate of change over successively smaller and smaller intervals.

.

Generally speaking, the instantaneous rate of change is the limit of the average rate of change over successively smaller and smaller intervals.

DEFINITION (INSTANTANEOUS RATE OF CHANGE)

The instantaneous rate of change of a function f at the input value x_1 is

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

17 February 2021

5/14

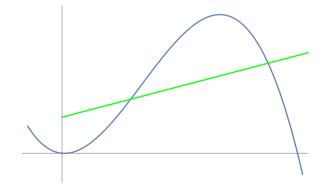
provided the limit exists.

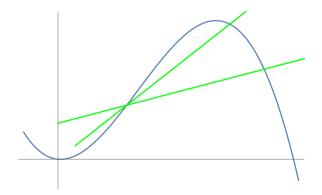
An alternative, but equivalent definition for the instantaneous rate of change is DEFINITION (INSTANTANEOUS RATE OF CHANGE)

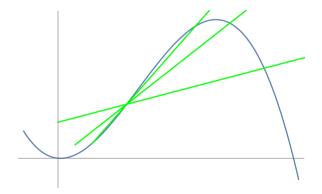
The instantaneous rate of change of a function f at the input value a is

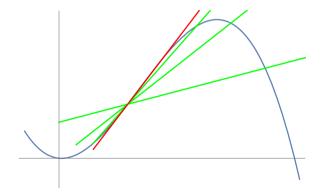
$$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$$

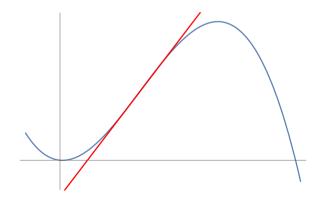
provided the limit exists.


Think of $x_1 = a$, $x_2 = a + h$, then $\Delta x = h$.


Math 130 - Essentials of Calculus Limits to Infinity and Intro to Derivative


EXAMPLE


A rock is dropped from a bridge over a river. The distance, in meters, between the rock and the fiver t seconds after the rock is dropped is given by $s(t) = 48 - 4.9t^2$. Compute the speed of the rock after 2 seconds.


Math 130 - Essentials of Calculus Limits to Infinity and Intro to Derivative

DEFINITION (SLOPE OF TANGENT LINE)

The tangent line to the curve y = f(x) at the point $(x_1, f(x_1))$ is the line though this point with slope

$$m = \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

provided the limit exists.

Math 130 - Essentials of Calculus Limits to Infinity and Intro to Derivative

DEFINITION (SLOPE OF TANGENT LINE)

The tangent line to the curve y = f(x) at the point $(x_1, f(x_1))$ is the line though this point with slope

$$m = \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

provided the limit exists.

DEFINITION (SLOPE OF TANGENT LINE)

The tangent line to the curve y = f(x) at the point (a, f(a)) is the line though this point with slope

$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

provided the limit exists.

17 February 2021 13 / 14

FINDING THE TANGENT LINE

EXAMPLE

Find the equation of the tangent line to the given function at the given point: • $y = 2x^2 + 1$ at (3, 19)

5 A T 5 A A

14/14

17 February 2021

Math 130 - Essentials of Calculus Limits to Infinity and Intro to Derivative

FINDING THE TANGENT LINE

EXAMPLE

Find the equation of the tangent line to the given function at the given point:

9
$$y = 2x^2 + 1$$
 at (3, 19)

2
$$f(x) = 3x - x^2$$
 at (1,2)

Math 130 - Essentials of Calculus Limits to Infinity and Intro to Derivative

N A TON A